

2015. 11. 3

 (Daming Wu)

Email: wdm1517@gmail.com

SeoulTech UCS Lab

Copyright ⓒ 2015 by USC Lab All Rights Reserved.

Chapter 7

Network Intrusion Detection and Analysis

Table of Contents

7.1 Why Investigate NIDS/NIPS?

7.2 Typical NIDS/NIPS Functionality

7.3 Modes of Detection

7.4 Types of NIDS/NIPSs

7.5 NIDS/NIPS Evidence Acquisition

7.6 Comprehensive Packet Logging

7.7 Snort

7.8 Conclusion

2

7.1 Why Investigate NIDS/NIPS?

3

• NIDS/NIPS alerts/logs may include details regarding illicit connections or even

attempts. can provide a richer source of information.

• NIDS/NIPS can be configured to alert on, or at least log traffic that firewalls

deem perfectly acceptable.

• An investigator could potentially modify a NIDS/NIPS configuration to begin

detecting events it wasn’t previously configured to record.

• Rarely, the NIDS/NIPS itself might be suspected of compromise.

7.2 Typical NIDS/NIPS Functionality

4

NIDS/NIPS typically features include:

• Rules: Descriptions of how to compare a packet or stream with known

malicious traffic.

• Alerts: Lists of suspicious packets/streams.

• Packet captures: Certain NIDS/NIPS can be configured to capture suspicious

packets and save them for later analysis.

7.2.1 Sniffing

5

Passively: Connecting NIDS/NIPS to a mirroring port on a switch. Traffic is not

detained.

Inline: Putting the NIDS/NIPS itself inline between two devices in a choke point

position. Can cause noticeable latency.

• Protocol Reassembly

Attackers intentionally fragment the attack traffic. NIDS to perform fragment

reassembly in order to be able to see and evaluate the target would receive and

process.

• Normalization

HTTP protocol allows for many different ways of encoding data.

• write a “signature” to detect each and every one of the various ways such

a string can be represented.

• normalize each string to its “canonical” form, and only then compare

them against the list of “known bad” things.

7.2.2 Higher-Layer Protocol Awareness

6

NIDS/NIPS can be configured to communicate alerts via various means. The

most common of these include:

• Sending email alerts

• Logging events to a syslog server

• Sending SNMP traps

• Logging events directly to a queriable database

• Store alert and event data locally

7.2.3 Alerting on Suspicious Bits

7

• Signature-Based Analysis:

This method compares headers, contents of packets, and streams of packets

against databases of known, malicious byte sequences in order to identify

suspicious traffic.

• Protocol Awareness:

Protocol-aware NIDS/NIPS reassemble fragments (Layer 3), reassemble streams

(Layer 4), and even reconstruct entire protocols (Layer 7) because they have to

understand how the endpoint of the communication will interpret the data.

• Behavioral Analysis:

The idea behind this approach is to spend time building a “baseline” of normal

network behavior against which to compare future behavior. “learns” what is

normal, in order to later detect aberrations.

7.3 Modes of Detection

8

• Commercial

• Check Point IPS-1

• Cisco IPS4

• Corero Network Security5

• Enterasys IPS6

• Roll-Your-Own

• It is both free for use under the GNU Public License (GPL)

• Supported by commercially funded research and development efforts.

7.4 Types of NIDS/NIPSs

9

Types of Evidence

• Configuration

• NIDS/NIPS has not been configured to alert upon a particular event, then

the absence of alerts for event is meaningless.

• Alert data

• Evaluate network traffic based on a set of rules or learned patterns, identify

traffic of interest, and produce alerts.

• Packet header and/or flow record information

• Log packet header and/or flow record data. help identify the origin,

destination, and patterns of activity.

7.5 NIDS/NIPS Evidence Acquisition

10

Types of Evidence

• Packet payloads

• NIDS/NIPS capture full packet contents from packets that trigger alerts,

and subsequent packets.

• Activities correlated across multiple sensors

• Topologically and temporally correlated event data is exceptionally useful.

7.5 NIDS/NIPS Evidence Acquisition

11

NIDS/NIPS are almost uniformly designed to be information aggregation devices,

so they are typically deployed with a central analysis console.

• GUI Interfaces

• accessed, inspected, and configured via some sort of graphical user

interface.

• web client, special client

• CLI Interfaces

• via SSH or direct console connection and use the command-line

interface to view configuration, logs, and alerts.

• Off-System Logging

• NIDS/NIPS systems are capable of sending critical evidence to an

aggregation repository.

7.5.2 NIDS/NIPS Interfaces

12

• Full content packet logging is occurring on NIDS/NIPS.

• Only packets being captured and made available for future inspection are

trigger alerts.

• NIDS/NIPS generally are not configured to capture the packets that preceded

an incident, nor the ones that followed.

• Problem for the investigator: often very little can be gleaned from a single

packet, as too much of the context is unavailable.

7.6 Comprehensive Packet Logging

13

An overview of Snort:

• Most widely used NIDS

• Open-source code

• Open rule language

• Extremely versatile

• Actively improving, partly due to commercial support

7.7 Snort

14

• Snort pulls packets in using libpcap, from whichever interface is specified.

• Snort passes all packets through preprocessors for reassembly and protocol analysis.

– At Layer 3, it reassembles fragments

– At Layer 4, it reassembles streams

– At Layer 5, it reassembles sessions

– At Layer 7, it reassembles transactions

• If at any of those layers, Snort detects anomalies, it can alert.

• After the analyzed information is handed off to the Snort rule engine. This engine can then

use any and all of the protocol information and payload contents to detect malicious

traffic.

• The output engine alerts will be communicated to the end-user.

7.7.1 Basic Architecture

15

• /etc/snort/snort.conf: global values for Snort are declared, internal/external

network definitions, preprocessors will be configured, output processors will be

configured for logging, and major of rules.

• /etc/snort/rules/: This directory contains the rules files themselves. Within each

file, rules can be disabled or enabled.

• /var/log/snort/: This directory contains the native alerts file, where Snort

records text-based alerts, and the libpcap files with corresponding packet

captures.

7.7.2 Configuration

16

Rule Header

• Action: This field describes what the Snort sensor should do when a packet is

discovered to match the rule. Typical actions are alert, log, pass, and drop.

• Protocol: This field describes the protocol the packet must be employing to

match the rule. Possible values are icmp, tcp, udp, or the general case, ip.

• Source IP/network and port: These fields describe what the source of a packet

must be match.

• Directionality operator: This field allows the rule author to specify whether a

match one direction only (from source to destination) or bidirectionally. The

allowed values are “->” and “<>”.

• Destination IP/network and port: These fields describe what the destination of a

packet must match.

7.7.3 Snort Rule Language

17

Examples

• alert tcp any any -> 192.168.2.1 80 (...)

• log udp 192.168.1.1 53 -> !192.168.1.0/24 any (...)

• drop ip $EXTERNAL_NET any <> $HTTP_SERVERS $HTTP_PORTS (...)

7.7.3 Snort Rule Language

18

General Rule Options (metadata about events) include:

• msg: Descriptive title that will be attached to any resulting alerts.

• sid: The required Snort ID number identifies the rule.

• rev: The rule’s revision number. The combination of “sid” and “rev” define rules

uniquely.

• reference: An optional pointer to background information, often a CVE number, or

URL.

7.7.3.2 Rule Body

19

Nonpayload Detection Rule Options

• Comparison operators for all of the protocol fields in the:

– IP packet header (TTL, fragmentation information, embedded protocol, IP

options, etc.)

– TCP segment header (TCP flags and stateful flow inspection, sequence, and

acknowledgment numbers, window size, etc.)

– ICMP header (ICMP type and code, as well as sequence values)

7.7.3.2 Rule Body

20

Payload Detection Rule Options

• Content matching for:

– ASCII strings

– Binary sequences

– PCREs

• Layer 7-specific protocol data, such as HTTP URIs and SMTP commands

• Absolute- and relative-positional searches, based on previous content matches

7.7.3.2 Rule Body

21

Post-Detection Rule Options

• Causing the alert and packet logging for the given rule to be handled in a

different way than other alerts.

• Triggering the capture of some or all of the subsequent packets in a stream

after a single packet has caused a rule to fire.

• Active response mechanisms, including the bidirectional reset of TCP

connections and the sending of ICMP Destination Unreachable packets.

7.7.3.2 Rule Body

22

• Snort Rule

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg :" ICMP PING ";

icode :0; itype :8; classtype :misc - activity ; sid :384; rev :5;)

• Snort Packet

03:12:08.359790 IP 10.0.1.10 > 10.0.1.254: ICMP echo request , id 32335 ,

seq 0, length 64

• Snort Alert

[**] [1:384:5] ICMP PING [**]

[Classification : Misc activity] [Priority : 3]

04/13 -03:12:08.359790 10.0.1.10 -> 10.0.1.254

ICMP TTL :64 TOS :0 x0 ID :38125 IpLen :20 DgmLen :84

Type :8 Code :0 ID :32335 Seq :1 ECHO

7.7.4 Examples

23

• we reviewed typical NIDS/NIPS functionality, including sniffing and

higher-layer protocol analysis.

• We discussed modes of detection, different types of NIDS/NIPS, and the

various types of evidence that can be recovered from them.

• We examined Snort, a popular open-source NIDS/NIPS, and concluded with

examples of Snort rules, captured packets, and alerts.

7.8 Conclusion

24

Thanks!

25

